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Abstract
This paper (the �rst in a series) focuses on using active-control methods to maintain

laminar 
ow in a region of the 
ow in which the natural instabilities, if left unattended,

lead to turbulent 
ow. The authors review previous studies that examine wave cancellation

(currently the most prominent method) and solve the unsteady, nonlinear Navier-Stokes

equations to evaluate this method of controlling instabilities. It is de�nitively shown

that instabilities are controlled by the linear summation of waves (i.e., wave cancellation).

Although a mathematically complete method for controlling arbitrary instabilities has

been developed (but not yet tested), the review, duplication, and physical explanation

of previous studies are important steps for providing an independent veri�cation of those

studies, for establishing a framework for subsequent work which will involve automated

transition control, and for detailing the phenomena by-which the automated studies can

be used to expand knowledge of 
ow control.
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Introduction

Most studies to date have been restricted to maintaining laminar 
ow through use of

a technique termed \wave cancellation." The wave-cancellation method assumes that a

wavelike disturbance can be linearly cancelled by introducing another wave with similar

amplitude that is out of phase. The key is to determine the parameters of the downstream

wave which counter (cancel) the evolution of the upstream generated wave. Milling (1981)

and Liepmann and Nosenchuck (1982a,b) tested the feasibility of this concept in water

tunnels with 
at plates and a zero pressure gradient. Using two vibrating wires (one in

an upstream and one in a downstream location) to generate traveling waves 180
o
out of

phase, Milling (1981) showed that a wave with a 0.6-percent amplitude could be reduced

(cancelled) to a disturbance with a 0.1-percent amplitude and a pro�le that no longer

resembled a wave shape. By using hot strips to generate and control traveling waves, Liep-

mann and Nosenchuck (1982a,b) obtained wall-shear results that indicate a partial wave

cancellation, which led to a 30-percent delay in transition. Liepmann and Nosenchuck

(1982b) also noted that the transition to turbulence could be accelerated if the two dis-

turbance generators were in phase; this technique may be useful to force the 
ow into a

turbulent state, for example, to prevent an undesirable 
ow separation. Finally, Liepmann

and Nosenchuck (1982b) showed that a comparable stabilization by steady heating would

require a 2000-percent increase in energy over the unstable wave-cancellation technique.

In an experimental wind-tunnel facility, Thomas (1983) used electromagnetic generators

to study and control traveling waves in a boundary layer on a zero-pressure-gradient 
at-

plate model. With an optimal choice of phase and amplitude for the second wave, Thomas

(1983) showed that a two-dimensional (2D) disturbance with an approximate amplitude of

1 percent was reduced to 0.2 percent through partial wave cancellation, and a transition

delay was realized. However, similar to previous experiments, complete relaminarization
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was not accomplished. Thomas postulated that an interaction between background dis-

turbances and the primary wave lead to increased levels of three dimensionality, which

prevents complete relaminarization. Thomas also determined that wave interactions de-

grade the e�ectiveness of the cancellation technique and suggested that the control be as

close as possible to the primary wave generator to decrease the e�ect of wave interactions.

Based on the study of Liepmann and Nosenchuck (1982a,b), Ladd and Hendricks (1988)

employed adaptive heating to control 2D instabilities in a laminar boundary layer on an

axisymmetric body (ellipsoid) in a water tunnel. Similar to the above experiments, some

degree of wave cancellation was obtained for the 2D instabilities; however, as Ladd and

Hendricks noted, the naturally occurring waves on an ellipsoid are highly three dimensional

(3D), which makes cancellation much more di�cult to achieve. Finally, unlike the previous

experiments that used arti�cially produced Tollmien-Schlichting (TS) waves, Pupator and

Saric (1989) and Ladd (1990) examined the cancellation of random disturbances on a 
at

plate in a wind tunnel and on an axisymmetric body in a water tunnel, respectively. With

periodic suction and blowing used as the actuator, both studies showed a reduction in the

random disturbance amplitudes.

Various theoretical and computational studies have been aimed at understanding

the physics of this wave-cancellation process. The linear asymptotic theory analysis by

Maestrello and Ting (1984) indicated that small amounts of local periodic heating can

excite disturbances that actively control the TS waves that travel on a 
at plate in water.

One of the �rst Navier-Stokes simulations of active control was conducted by Biringen

(1984), who used a temporally growing instability formulation in a laminar channel 
ow.

Using suction and blowing as the control, Biringen (1984) observed approximately a 50-

percent reduction in the amplitudes of the 2D instabilities and a decrease in the growth

of the 3D instabilities; the Reynolds stress that resulted from the control was nearly zero

due to the destruction of the streamwise and wall-normal disturbance velocities. Metcalfe
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et al. (1985) used solutions of the Navier-Stokes equations in the temporally growing in-

stability formulation to study the e�ect of a moving wall on unstable waves traveling in

a laminar 
ow on a 
at plate. By using an energy analysis, they showed that the wall

motion causes the Reynolds-stress term to become negative, which implies a feed of energy

from the perturbed 
ow back into the mean 
ow. In e�ect, this energy analysis showed

how a perturbation to an unstable 
ow can be stabilizing. However, Metcalfe et al. (1985)

pointed out that downstream of the suction and blowing the unstable residual wave began

to grow at about the same rate as prior to the control. Bower et al. (1987) and Pal et

al. (1991) used the 2D Orr-Sommerfeld equation to study and control instability-wave

growth by superposition. They show within the limits of linear stability theory and the

parallel-
ow assumption that waves (even multifrequency waves) can be cancelled. Lau-

rien and Kleiser (1989) used solutions of the Navier-Stokes equations in the temporally

growing instability formulation to study the e�ects of unsteady suction and blowing on

unstable 2D and 3D waves traveling in a parallel laminar 
ow on a 
at plate; Kral and Fasel

(1989) used solutions of the Navier-Stokes equations in the spatially growing instability

formulation to study the e�ect of unsteady heating on unstable 2D and 3D waves traveling

in a nonparallel laminar 
ow on a 
at plate. The 3D modes are secondary instabilities

arising from a threshhold amplitude of the 2D wave. Both studies showed that transition

can be delayed (or accelerated) by superposing disturbances out of phase (in phase) with

the primary TS wave and that control is only e�ective if it is applied at an early stage

of transition, where the 2D wave is dominant. Finally, Danabasoglu et al. (1991) used

solutions of the Navier-Stokes equations in the spatially growing instability formulation to

study the e�ect of unsteady suction and blowing on unstable 2D and 3D waves traveling

in a laminar channel 
ow. Consistent with the previous Navier-Stokes studies, transition

was delayed by superposition of out-of-phase control disturbances on the disturbances that

were generated upstream. Additionally, a 2D TS wave with an amplitude as large as 3
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percent of the channel centerline velocity was suppressed by approximately 85 percent with

wave cancellation.

All of the previous active-control studies were undertaken with the a priori assump-

tion that wave cancellation was accomplished by the linear superposition (or forcing) of

waves with 180
o
phase shifts. None of these previous studies were able to achieve com-

plete (or exact) instability removal (wave cancellation) from the 
ow, except for the linear

studies reported in Refs. 11 and 12 which could obtain cancellation because the nonlin-

ear governing equations were reduced to a linear system. The present paper de�nitively

documents the fundamental reason for the reductions in amplitudes of the instabilities in

previous experiments and computations by the addition of a control wave, demonstrates

why complete wave cancellation was not possible in the previous studies, explains why

the wave regains its exponential growth characteristic a small distance downstream of the

control wave, and describes why wave cancellation is not possible in the true 3D nonlinear

transition case.

Numerical Experiments

These tasks are accomplished by numerical example using a coupled high-order �nite-

di�erence/spectral methods direct numerical simulation (DNS) code which solves the full

nonlinear, unsteady Navier-Stokes equations. For the present Navier-Stokes computations,

the grid has 661 streamwise and 61 wall-normal points. The far-�eld boundary is located

75�
�

o
from the wall, and the streamwise distance is 308�

�

o
from the in
ow. For the time

marching, a time-step size of 320 steps per wave period is chosen for the three-stage

Runge-Kutta method. Periodic suction and blowing through the wall is used to initiate

and control disturbances, where vf is the initial amplitude and vw is the control amplitude.

A su�ciently re�ned grid and small enough time step are used to displace the numerical

techniques from the 
ow physics. (This is clearly demonstrated by results in �gure 2.)
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A small-amplitude disturbance (vf = 0:0001) with a frequency ! = 0:0774 and an

in
ow Reynolds number R = 900 is used for this investigation. A number of simulations

were conducted to control the growth of TS waves within the boundary layer. Results

from these simulations are shown in Fig. 1, where the TS wave amplitudes are shown with

downstream distance. For the range of amplitudes shown, all unsteady control waves lead

to signi�cant decreases in amplitudes and growth rates as a result and downstream of the

control, which is spatially located just upstream of R = 1000. As expected from many

previous linear studies and duplicated in Fig. 1, steady blowing is destabilizing, and steady

suction is stabilizing. In addition, the steady control cases are included to qualitatively

illustrate Liepmann and Nosenchuck's (1982b) hypothesis that steady control requires

orders of magnitude more energy than is required for unsteady control to achieve similar

control features. The results of Fig. 1 demonstrate that the small amplitudes required for

nearly optimal unsteady wave cancellation barely in
uence the stability of the TS wave

with steady suction or blowing.

The wave cancellation by the superposition principle has been assumed to be the rea-

son for the decreased amplitudes and growth rates for the controlled waves. Metcalfe et

al. (1985) showed that the moving wall causes a negative Reynolds stress, which implies

an energy feed from the unstable 
ow into the mean 
ow, which leads to a more stable


ow. An examination of the Reynolds stress in light of the above argument may lead

to a similiar conclusion for the present results; however, this cause-e�ect relationship is

unlikely with the small-disturbance amplitudes generated by suction and blowing through

a solid wall. Three simulations were conducted to ensure that linear superposition of in-

dividual instabilities was, in fact, responsible for the results shown in Fig. 1 and in the

previous experiments and computations. Figure 2 shows the instantaneous streamwise

velocity obtained in one of three ways: by forcing the disturbance with no control (Forc-

ing only); by forcing the suction-and-blowing control with no upstream forcing (Control
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only); and by upstream disturbance forcing and downstream control forcing, which is the

wave-cancellation case (Control). By discretely summing the control-only and forcing-only

numerical results, the superposition results are obtained. Shown in Fig. 2, this linear

superposed solution is identical to the wave-cancellation simulation. This comparison not

only de�nitively validates the supposition that linear superposition is the reason for the

previous experimental and computational results, but it explains the reason for the fail-

ure of the simulations to reach an exact cancellation of disturbances. If the waves had

a spatial/temporal phase shift of exactly 180
o
and the amplitudes were exactly the same

quantitative value for each streamwise location, then superposition would lead to a com-

plete wave cancellation. Figure 2 shows that the control wave di�ers in both amplitude

and phase from the initiated instability, where the control has a smaller amplitude than

the disturbance. This di�erence leads to a superposed wave that has a reduced amplitude

but retains some semblance of the wave shape and phase. Figure 2 also explains the phase

shift of 180
o
between the control cases (vw = 0:0004 and vw = 0:00088) which are shown

in Fig. 1. For vw = 0:0004, the control amplitude is smaller than the initial disturbance

and leads to the qualitatively superposed wave of Fig. 2. As the control amplitude (e.g.,

vw = 0:00088) exceeds the disturbance amplitude, the resulting superposed wave falls in

line with the control phase, which leads to a downstream evolving instability which has a

phase shift of approximately 180
o
from the original upstream disturbance.

The process of introducing a control wave which exactly matches the phase and am-

plitude of the initial spatially growing disturbance requires many signi�cant digits of accu-

racy. This explains why exact wave cancellation was not possible in previous experiments,

where such accuracy is not possible. Previous computations could obtain exact cancellation

through optimizing the control phase and amplitude to match the initial instability, assum-

ing the initial disturbance had an evolution which could be described by a linear system.

This leads us to the �nal tasks of explaining why the instability regains its exponential
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growth characteristics in a short distance downstream and why the wave-cancellation tech-

nique does not work for the real 3D transition problem.

The above results demonstrate that this process of wave cancellation is very sensitive

to amplitude and phase of the control wave. If exact cancellation is not achieved, then

the disturbance amplitude is signi�cantly reduced and the semblance of the wave is pri-

marily retained. Within the boundary layer, a redistribution of energy very quickly occurs

whereby the dominant mode regains its momentum and begins to exponentially grow as

prior to the introduction of the control wave. This process is not limited to the wave-

cancellation technique, but occurs with the initiation process of a wave (e.g., vibrating

ribbon, etc.).

Finally, the wave-cancellation technique will not work for the real transition problem

because the underlying assumption of the technique resides in the ability to linearly su-

perpose instabilities to delay transition for this problem and in general control the 
ow.

The present results document the parameter sensitivities for a small-amplitude disturbance

(i.e., the governing equations can be described by a linear system); however, when mul-

tiple instabilities are present and have the opportunity to nonlinearly interact, then the

required control waves can self-interact and interact with the initial modes. This potential

interaction would prohibit any hope for the superposition technique.

Conclusions and Future Directions

The present paper uses direct numerical simulation cases to de�nitively document

that wave cancellation is the fundamental reason for the reductions in amplitudes of the

instabilities in previous experiments and computations. It is shown that wave cancellation

is very sensitive to the control parameters and usually leads to a downstream evolving wave

which has a greatly reduced amplitude but resembles the wave instability. Because the

downstream instability retains the wave characteristics, it regains its exponential growth
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a small distance downstream of the control wave input. Finally, previous studies obtained

transition delays only when a 2D control was imposed when three-dimensional instabilities

had su�ciently small amplitudes because otherwise the superposition assumption becomes

invalid. Hence, wave cancellation is not possible in the true 3D nonlinear transition case.

Much of the transition process involves small-amplitude disturbances and can there-

fore be described by linear systems. Hence, in a subsequent paper (Part II), the wave-

cancellation process will be automated under the linear superposition process such that a

controller will be evaluated; it will receive sensor information as input and will provide a

signal to control the actuator response as output. The automated scenario for this 
ow

control approach is shown in Fig. 3. (In the present paper only the actuator was used;

it will be based on known disturbance information for wave cancellation.) Clearly, this

automation could only be successful for small-amplitude non-interacting modes. The �nal

papers (Parts III ad IV) for the 
at-plate problem will involve an actuator, a sensor down-

stream of the actuator, and the coupling of optimal control theory with the Navier-Stokes

equations to form a closed-loop feedback system for the control of arbitrary instabilities.

For this formal theory, there is no a priori assumption of linear wave superposition; there-

fore, the potential exists for the control of nonlinear instabilities.

8



References

Biringen, S., 1984, \Active Control of Transition by Periodic Suction-Blowing,"

Physics of Fluids, Vol. 27, No. 6, pp. 1345{1347.

Bower, W. W., Kegelman, J. T., Pal, A., and Meyer, G. H., 1987, \A Numerical Study

of Two-Dimensional Instability-Wave Control Based on the Orr-Sommerfeld Equation,"

Physics of Fluids, Vol. 30, No. 4, pp. 998{1004.

Danabasoglu, G., Biringen, S., and Streett, C. L., 1991, \Spatial Simulation of In-

stability Control by Periodic Suction and Blowing," Physics of Fluids, Vol. 3, No. 9, pp.

2138{2147.

Kral, L. D., and Fasel, H. F., 1989, \Numerical Investigation of the Control of the

Secondary Instability Process in Boundary Layers," AIAA Paper 89-0984.

Ladd, D. M., and Hendricks, E. W., 1988, \Active Control of 2-D Instability Waves

on an Axisymmetric Body," Experiments in Fluids, Vol. 6, pp. 69{70.

Ladd, D. M., 1990, \Control of Natural Laminar Instability Waves on an axisymmetric

body," AIAA Journal, Vol. 28, No. 2, pp. 367{369.

Laurien, E., and Kleiser, L., 1989, \Numerical Simulation of Boundary-Layer Transi-

tion and Transition Control," Journal of Fluid Mechanics, Vol. 199, pp. 403{440.

Liepmann, H. W., and Nosenchuck, D. M., 1982a, \Control of Laminar-Instability

Waves Using a New Technique," Journal of Fluid Mechanics, Vol. 118, pp. 187{200.

Liepmann, H. W., and Nosenchuck, D. M., 1982b, \Active Control of Laminar-

Turbulent Transition," Journal of Fluid Mechanics, Vol. 118, pp. 201{204.

9



Maestrello, L., and Ting, L., 1984, \Analysis of Active Control by Surface Heating,"

AIAA Paper 84-0173.

Metcalfe, R. W., Rutland, C., Duncan, J. H., and Riley, J. J., 1985, \Numerical

Simulations of Active Stabilization of Laminar Boundary Layers," AIAA Paper 85-0567.

Milling, R. W., 1981, \Tollmien-Schlichting Wave Cancellation," Physics of Fluids,

Vol. 24, No. 5, pp. 979{981.

Pal, A., Bower, W. W., and Meyer, G. H., 1991, \Numerical Simulations of Multifre-

quency Instability-Wave Growth and Suppression in the Blasius Boundary Layer," Physics

of Fluids A, Vol. 3, No. 2, pp. 328{340.

Pupator, P., and Saric, W., 1989, \Control of Random Disturbances in a Boundary

Layer," AIAA Paper 89-1007.

Thomas, A. S. W., 1983, \The Control of Boundary-Layer Transition Using a Wave-

Superposition Principle," Journal of Fluid Mechanics, Vol. 137, pp. 233{250.

10



Fig. 1. Active control of Tollmien-Schlichting waves in 
at-plate boundary layer.

(SB=Steady Blowing, SS=Steady Suction)
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Fig. 2. Ver�cation of superposition principle.
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Fig. 3. Schematic of active control with wave cancellation.
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